Class-imbalanced classifiers for high-dimensional data
نویسندگان
چکیده
A class-imbalanced classifier is a decision rule to predict the class membership of new samples from an available data set where the class sizes differ considerably. When the class sizes are very different, most standard classification algorithms may favor the larger (majority) class resulting in poor accuracy in the minority class prediction. A class-imbalanced classifier typically modifies a standard classifier by a correction strategy or by incorporating a new strategy in the training phase to account for differential class sizes. This article reviews and evaluates some most important methods for class prediction of high-dimensional imbalanced data. The evaluation addresses the fundamental issues of the class-imbalanced classification problem: imbalance ratio, small disjuncts and overlap complexity, lack of data and feature selection. Four class-imbalanced classifiers are considered. The four classifiers include three standard classification algorithms each coupled with an ensemble correction strategy and one support vector machines (SVM)-based correction classifier. The three algorithms are (i) diagonal linear discriminant analysis (DLDA), (ii) random forests (RFs) and (ii) SVMs. The SVM-based correction classifier is SVM threshold adjustment (SVM-THR). A Monte-Carlo simulation and five genomic data sets were used to illustrate the analysis and address the issues. The SVM-ensemble classifier appears to perform the best when the class imbalance is not too severe. The SVM-THR performs well if the imbalance is severe and predictors are highly correlated. The DLDA with a feature selection can perform well without using the ensemble correction.
منابع مشابه
Machine Learning Methods for High-Dimensional Imbalanced Biomedical Data
Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance....
متن کاملFlexible high-dimensional classification machines and their asymptotic properties
Classification is an important topic in statistics and machine learning with great potential in many real applications. In this paper, we investigate two popular large-margin classification methods, Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD), under two contexts: the high-dimensional, low-sample size data and the imbalanced data. A unified family of classification ma...
متن کاملA Novel One Sided Feature Selection Method for Imbalanced Text Classification
The imbalance data can be seen in various areas such as text classification, credit card fraud detection, risk management, web page classification, image classification, medical diagnosis/monitoring, and biological data analysis. The classification algorithms have more tendencies to the large class and might even deal with the minority class data as the outlier data. The text data is one of t...
متن کاملClass imbalance and the curse of minority hubs
Most machine learning tasks involve learning from high-dimensional data, which is often quite difficult to handle. Hubness is an aspect of the curse of dimensionality that was shown to be highly detrimental to k-nearest neighbor methods in high-dimensional feature spaces. Hubs, very frequent nearest neighbors, emerge as centers of influence within the data and often act as semantic singularitie...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in bioinformatics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2013